

LRFD

Section 3.72

New: January 2005

CLICK HERE TO Index

LRFD Bridge Design Guidelines

Concrete Pile Cap Intermediate Bents – Section 3.72

Index

Page: i-1

3.72.1 General

1.1 Material Properties

3.72.2 **Design**

2.1 Limit States and Factors

3.72.3 Details

3.1 General

3.2 Front Sheet

3.72.4 Reinforcement

4.1 General

LRFD Bridge Design Guidelines

Concrete Pile Cap Intermediate Bents – Section 3.72

General

Page: 1.1-1

3.72.1 **General**

1.1 Material Properties

Concrete

Typically, shall consist of:

Class B Concrete (Substructure)

 $f'_c = 3.0 \text{ ksi}$

In addition, *Class B-1 Concrete (Substructure)* may also be used in special cases (See Project Manager). The following equations shall apply to both concrete classes:

LRFD 5.4.2.4 Concrete modulus of elasticity,

 $E_c = 33000 K_1 w_c^{1.5} \sqrt{f'_c}$

Where:

 w_c = unit weight of non-reinforced concrete = 0.145 kcf K_1 = correction factor for source of aggregate = 1.0

LRFD 5.4.2.6 Modulus of rupture: For minimum reinforcement,

 $f_r = 0.37 \sqrt{f'_c}$

For all other calculations,

 $f_r = 0.24 \sqrt{f'_c}$

$$\sqrt{f'_c}$$
 is in units of ksi

Reinforcing Steel

Minimum yield strength,

 $f_{y} = 60.0 \text{ ksi}$

 $E_{\rm S} = 29000 \; {\rm ksi}$

LRFD 5.4.3.2

Steel modulus of elasticity,

Concrete Pile Cap Intermediate Bents – Section 3.72

Design

Page: 2.1-1

3.72.2 Design

2.1 Limit States and Factors

In general, each component shall satisfy the following equation:

LRFD 1.3.2.1

$$Q = \sum \eta_i \gamma_i Q_i \le \phi R_n = R_r$$

Where:

Q =Total factored force effect

 $Q_i =$ Force effect

 $\eta_i =$ Load modifier

 $\gamma_i =$ Load factor

 $\phi =$ Resistance factor $R_n =$ Nominal resistance

 $R_r =$ Factored resistance

LRFD 5.5

LRFD 5.5.4.2

Limit States

The following limit states shall be considered for bent design:

STRENGTH - I

STRENGTH - III

STRENGTH - IV

STRENGTH - V

SERVICE - I

FATIGUE

See LRFD Table 3.4.1-1 and LRFD 3.4.2 for Loads and Load Factors applied at each given limit state.

Resistance factors

STRENGTH limit states, see LRFD 5.5.4.2

For all other limit states, $\phi = 1.00$ LRFD 1.3.2.1

LRFD 1.3.2.1 Load Modifiers

For loads where a maximum value of load factor is appropriate:

 $\eta = (\eta_I \eta_R \eta_D) \ge 0.95$

For loads where a minimum value of load factor is appropriate:

 $\eta = 1 / (\eta_I \eta_R \eta_D) \le 1.0$

Where:

 η_D = Factor relating to ductility LRFD 1.3.3 LRFD 1.3.4

 η_R = Factor relating to redundancy

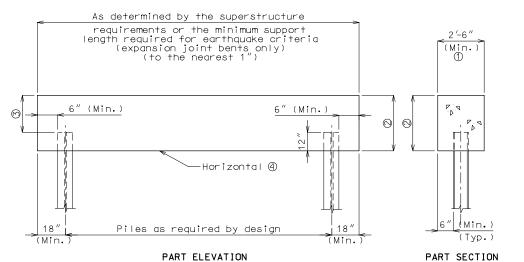
LRFD 1.3.5 η_I = Factor relating to operational importance

LRFD Bridge Design Guidelines

Concrete Pile Cap Intermediate Bents – Section 3.72

Design

Page: 2.1-2


Table 3.72.2.1.1 Load modifiers

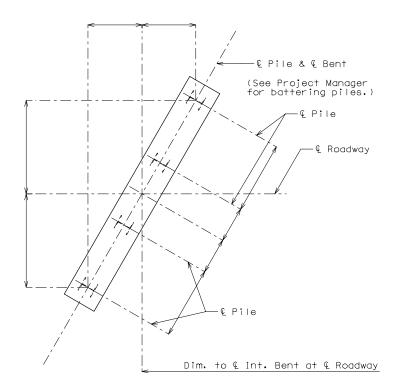
	All Limit States
Ductility, η_D	1.0
Redundancy, η_R	1.0
Operational importance, η_I	1.0
$\eta = (\eta_I \ \eta_R \ \eta_D)$	1.0
$\eta = 1 / (\eta_I \eta_R \eta_D)$	1.0

Concrete Pile Cap Intermediate Bents-Section 3.72 Page: 3.1-1

Details

3.1 GENERAL

- 1 Use 2'-6" minimum or as determined by the superstructure requirements or the minimum support length required for earthquake criteria (expansion joint bents only) (3" increments).
- \bigcirc = 2'-9" (Min.) for Wide Flange and Double-Tee Girders or, 3'-0" (Min.) for Prestressed Girders and Plate Girders.
- S Check the clearance of the anchor bolt well to the top of pile. Increase the beam depth if needed.
- 4 If the depth at the end of the beam, due to the steps, exceeds 4'-6'', the beam bottom should be stepped or sloped.

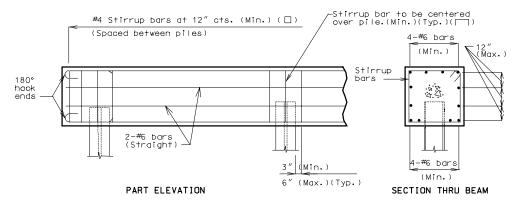

Concrete Pile Cap Intermediate Bents-Section 3.72 Page: 3.2-1

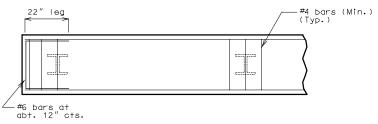
Details

3.2 FRONT SHEET

Note: The following are details and dimensions for the Plan View on the Front Sheets.

Details for unsymmetrical roadways will require dimensions tying Centerline Lane to Centerline Structure.




Concrete Pile Cap Intermediate Bents-Sec. 3.72

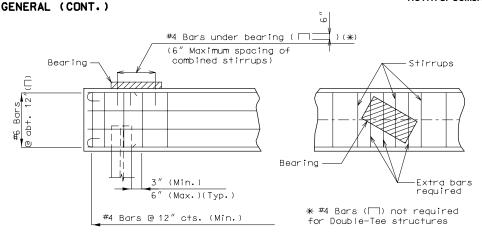
Page: 4.1-1

4.1 GENERAL

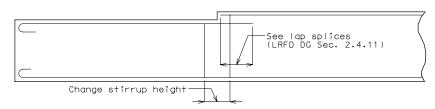
Reinforcement

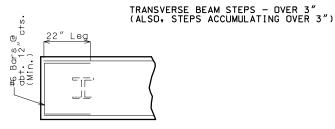
PART PLAN

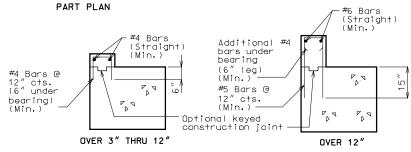
Note:


Locate #4 bars " \square " under bearings where required to maintain a 6" maximum spacing of combined stirrups. (#4 bars " \square " are not required for Double-Tee Structures.)

When an expansion device is used at an intermediate bent, all reinforcement located entirely within the beam or extending into the beam shall be epoxy coated.


Concrete Pile Cap Intermediate Bents-Sec. 3.72


Page: 4.1-2


Reinforcement

REINFORCEMENT UNDER BEARINGS

LONGITUDINAL BEAM STEPS